
Stick-breaking Attention

Stick-breaking Attention
^ old title…

Revised title…

Overview

1. Prior work

2. Motivation

3. Formulation of Stick-breaking

4. Experimental results

5. Implementation details

Prior work…

Grammar Structures

https://physics.allen-zhu.com/part-1

Stick-breaking Attention

Stick-breaking Attention

● Pros:
○ No position embeddings needed
○ Good length extrapolation behaviour
○ Possible conditional computation tricks for speedups

● Cons:
○ Computation of log-sigmoids much much slower than exponents in softmax

Stick-breaking Attention

Experimental Results

● Small Synthetic Task (MQRAR)
● 350M models (Length Extrapolation)
● 1B & 3B models

(general LLM evals, RULER)

Multi-Query Repeated Associative Recall

Zoology, https://arxiv.org/abs/2312.04927

● Setting where variable is repeatedly assigned
instead of assigned once

● Task is to retrieve the last assignment

Multi-Query Repeated Associative Recall

Length Generalisation

● 350M models

● Trained on 2048 context length

● Evaluated on longer contexts

1B and 3B model results

1B and 3B model results

RULER benchmarks

Forward Pass

● Compute in log-space (base 2, faster)

● Skips one extra softplus computation

● Accumulates from right to left (structure of stick-breaking)

● Red border on the left denotes cumulative softplus term

Backward Pass

● Left to right accumulation of logit gradients

● Unlike softmax, can’t accumulate towards K and V

● Instead of 1 atomic add for Q gradients, it’s 2 for K
and V

Triton Implementation

● Softplus acceleration
Naive triton implementation is too slow, used inline ASM for speedups

● Manual atomic_add
Naive atomic add implementation slow, implemented manual while-lock

Softplus

Equivalent PTX:

Triton:

tl.where(
 x < 15.0,
 tl.math.log2(1 + tl.math.exp2(x)),
 x
)

While-lock for atomic add

● Use HBM variable as lock

● One-lock for entire block atomic add for
both k and v blocks

 while tl.atomic_cas(Lock_ptr, 0, 1) == 1:

 pass

 count = tl.load(Count_ptr)

 if count == 0:

 tl.store(Count_ptr, 1)

 else:

 a += tl.load(A_ptrs)

 b += tl.load(B_ptrs)

 tl.store(A_ptrs, a)

 tl.store(B_ptrs, b)

 tl.atomic_xchg(Lock_ptr, 0)

Source:
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html

Block Skipping during Decoding

● If sum of attention weights sum to 1, following time-steps
can be skipped.

● Implementation caveats:
○ Block must all sum to 1 in order to do early exit
○ Have to wait for slowest head for improvements

Additional follow-up improvements

● Works better at larger head sizes: 128 dim
● Per-head normalisation
● Remainder bias

Remainder bias

● Sort of like an ‘attention sink’ – weighted
with remaining mass of attention

● Maintains magnitude of output vector
instead of giving almost 0 if attention
weights are close to 0

Length extension

Forget Gate

● Modulate the betas in stick-breaking with a
forget gate,

● Forget gate is computed only on the
key-value side,

● Enables further sparsity
-> more space in KV cache

Forget Gate
First Layer

Last Layer

Forget Gate with auxiliary loss
First Layer

Last Layer

Recap

● Stick-breaking attention: swaps out softmax for stick-breaking process

● Empirical results: surprising length-generalisation properties, despite recency bias.

● Triton flash-attention-like implementation: slower, but allows scaling up

1. Forward pass

1. Each (batch, head, horizontal block)
assigned to different thread.
(Colour on right represent separate
threads)

2. Calculate stickbreaking output from right to
left.

3. Save cumulative log-probabilities
(Red borders)

2. Backward pass (Step 1, dQ)

1. Each (batch, head, horizontal block)
assigned to different thread.
(Colour on right represent separate
threads)

2. Calculate from left to right
3. Recompute attention probabilities using

memoized values (Red borders)
4. Calculate cumulative gradients forward

(blue borders)

2. Backward pass (Step 1, dV & dK)

1. Each (batch, head, vertical block)
assigned to different thread.
(Colour on right represent separate
threads)

2. Calculate from top to bottom
3. Recompute attention probabilities using

memoized values (Red borders)
4. Recompute dV, dK gradients using

memoized values (Blue borders)

Sparse computation

Computation can be skipped if blocks sum to 1.

