^ old title...

Revised title...

Published as a conference paper at ICLR 2025

SCALING STICK-BREAKING ATTENTION: AN EFFICIENT IMPLEMENTATION AND IN-DEPTH STUDY

Shawn Tan MIT-IBM Watson AI Lab shawntan@ibm.com Yikang Shen MIT-IBM Watson AI Lab yikang.shen@ibm.com Songlin Yang MIT yangsl66@mit.edu

Aaron Courville Mila, Université de Montréal courvila@mila.quebec Rameswar Panda MIT-IBM Watson AI Lab rpanda@ibm.com

Overview

- 1. Prior work
- 2. Motivation
- 3. Formulation of Stick-breaking
- 4. Experimental results
- 5. Implementation details

Prior work...

THE NEURAL DATA ROUTER: Adaptive Control Flow in Transformers Improves Systematic Generalization

Róbert Csordás¹ Kazuki Irie¹ Jürgen Schmidhuber^{1,2} ¹The Swiss AI Lab, IDSIA, University of Lugano (USI) & SUPSI, Lugano, Switzerland ²King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia {robert, kazuki, juergen}@idsia.ch

2.2 GEOMETRIC ATTENTION: LEARNING TO ATTEND TO THE CLOSEST MATCH (HORIZONTAL FLOW)

We propose geometric attention designed to attend to the closest matching element. Like in regular self-attention, given an input sequence $[\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, ..., \boldsymbol{x}^{(N)}]$ with $\boldsymbol{x}^{(i)} \in \mathbb{R}^{d_{\text{in}}}$, each input is projected to key $\boldsymbol{k}^{(i)} \in \mathbb{R}^{d_{\text{key}}}$, value $\boldsymbol{v}^{(i)} \in \mathbb{R}^{d_{\text{value}}}$, query $\boldsymbol{q}^{(i)} \in \mathbb{R}^{d_{\text{key}}}$ vectors, and the dot product is computed for each key/query combination. In our geometric attention, the dot product is followed by a sigmoid function to obtain a score between 0 and 1:

$$\boldsymbol{P}_{i,j} = \sigma(\boldsymbol{k}^{(j)\top} \boldsymbol{q}^{(i)}) \tag{6}$$

which will be treated as a probability of the key at (source) position j matching the query at (target) position i. These probabilities are finally converted to the attention scores $A_{i,j}$ as follows:

$$\mathbf{A}_{i,j} = \mathbf{P}_{i,j} \prod_{k \in \mathbb{S}_{i,j}} (1 - \mathbf{P}_{i,k})$$
(7)

ModuleFormer: Modularity Emerges from Mixture-of-Experts

Yikang Shen* MIT-IBM Watson AI Lab **Zheyu Zhang** Tsinghua University

Shawn Tan Mila/University of Montreal Zhenfang Chen MIT-IBM Watson AI Lab Chuang Gan MIT-IBM Watson AI Lab

Tianyou Cao

Tsinghua University

3.2 Stick-breaking Self-Attention head

The stick-breaking self-attention is designed for the Transformer decoder to model the attention of each token \mathbf{x}_t to previous tokens $\mathbf{x}_{< t}$. It uses the stick-breaking process view of the Dirichlet process to model the attention distribution instead of the softmax in a standard attention layer. The motivation to pay attention to the latest matching tokens. It can also be considered a simplification of the geometric attention proposed in Csordás et al. [2021].

Given an input vector sequence of t time steps $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_t$, each input is projected to a sequence of key vectors $\mathbf{k}_1, \mathbf{k}_2, ..., \mathbf{k}_t$ and a sequence of value vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_t$. To compute the attention of time step t, the input \mathbf{x}_t is projected to a query vector $\mathbf{q}_t = \mathbf{W}_q \mathbf{x}_t$, where \mathbf{W}_q is the query projection matrix. For all previous steps and the current step $i \leq t$, we compute the probability that the key at time step i matches the query at time step t:

$$\beta_{i,t} = \operatorname{sigmoid}(\mathbf{k}_i^{\mathsf{T}} \mathbf{q}_t). \tag{3}$$

4

To get the attention weights of the most recent matching key, we use the stick-breaking process:

$$p_{i,t} = \beta_{i,t} \prod_{i < j \le t} (1 - \beta_{j,t}).$$
(4)

Published as a conference paper at ICLR 2022

THE NEURAL DATA ROUTER: Adaptive Control Flow in Transformers Improves Systematic Generalization

Róbert Csordás¹ Kazuki Irie¹ Jürgen Schmidhuber^{1,2}

¹The Swiss AI Lab, IDSIA, University of Lugano (USI) & SUPSI, Lugano, Switzerlar ²King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arat {robert, kazuki, juergen}@idsia.ch ModuleFormer: Modularity Emerges from Mixture-of-Experts

Shawn Tan Mila/University of Montreal

Yikang Shen*

MIT-IBM Watson AI Lab

Zhenfang Chen MIT-IBM Watson AI Lab

Zheyu Zhang

Tsinghua University

Tianyou Cao Tsinghua University

Chuang Gan MIT-IBM Watson AI Lab

NEURAL LANGUAGE MODELING BY JOINTLY LEARNING SYNTAX AND LEXICON

Yikang Shen, Zhouhan Lin, Chin-Wei Huang & Aaron Courville

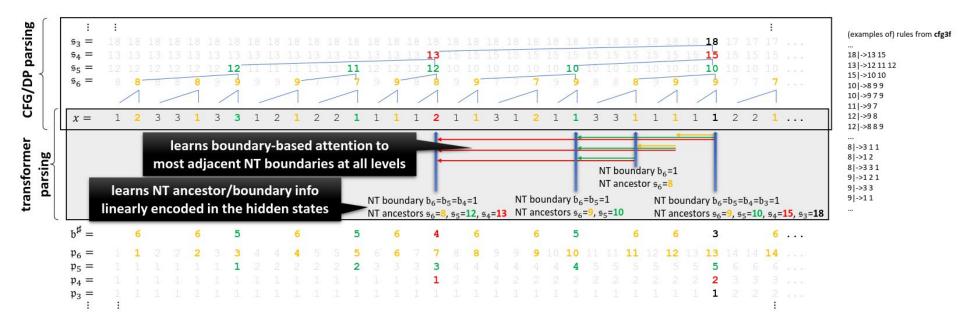
Department of Computer Science and Operations Research Universit de Montral Montral, QC H3C3J7, Canada {yi-kang.shen, zhouhan.lin, chin-wei.huang, aaron.courville}@umontreal.ca

4.1 MODELING LOCAL STRUCTURE

In this section we give a probabilistic view on how to model the local structure of language. A detailed elaboration for this section is given in Appendix B. At time step t, $p(l_t|x_0, ..., x_t)$ represents the probability of choosing one out of t possible local structures. We propose to model the distribution by the Stick-Breaking Process:

$$p(l_t = i | x_0, ..., x_t) = (1 - \alpha_i^t) \prod_{j=i+1}^{t-1} \alpha_j^t$$
(4)

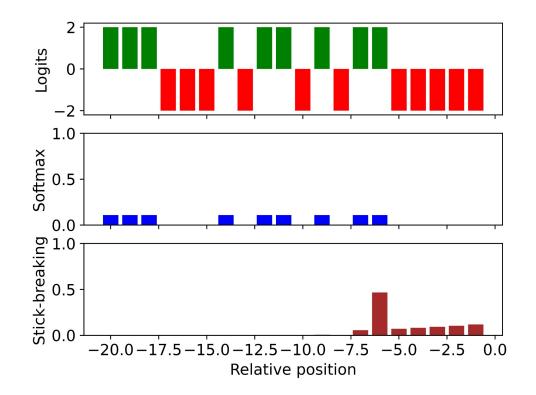
Grammar Structures



https://physics.allen-zhu.com/part-1

Logits
$$z_{i,j} = \frac{\boldsymbol{q}_i^{\top} \boldsymbol{k}_j}{\sqrt{d_{head}}}$$

Softmax $\boldsymbol{A}_{i,j} = \frac{\exp(z_{i,j})}{\sum_{k=1}^{j} \exp(z_{k,j})}$
Stick-breaking $\boldsymbol{A}_{i,j} = \sigma(z_{i,j}) \prod_{i < k < j} (1 - \sigma(z_{k,j}))$



• Pros:

- No position embeddings needed
- Good length extrapolation behaviour
- Possible conditional computation tricks for speedups
- Cons:
 - Computation of log-sigmoids much much slower than exponents in softmax

Experimental Results

- Small Synthetic Task (MQRAR)
- 350M models (Length Extrapolation)
- 1B & 3B models (general LLM evals, RULER)

Multi-Query Repeated Associative Recall

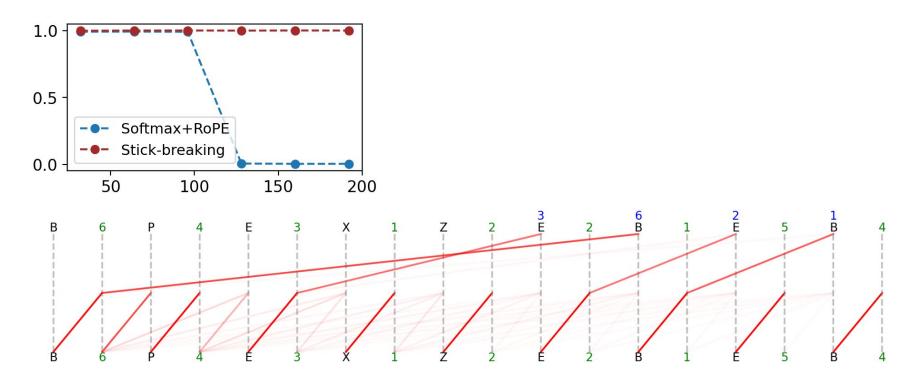
• Setting where variable is repeatedly assigned instead of assigned once

-

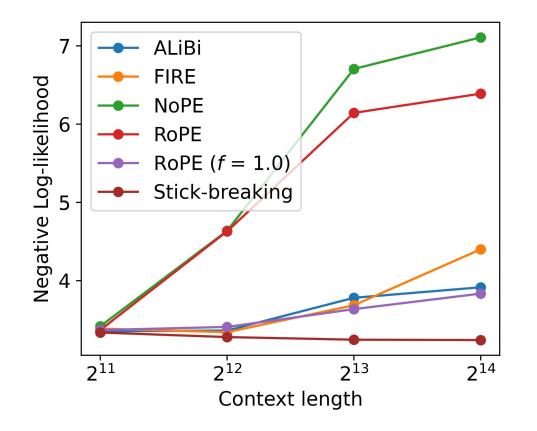
• Task is to retrieve the last assignment

Zoology, https://arxiv.org/abs/2312.04927

Multi-Query Repeated Associative Recall



Length Generalisation



- 350M models
- Trained on 2048 context length
- Evaluated on longer contexts

1B and 3B model results

Task	ARC-c ARC-e Accuracy (no		Hella.	OBQA d)	PIQA	RACE Accur	SciQ racy	Wino.	Avg.	Wiki. <i>Ppl</i> .	
1B Parameter M	Aodels	6876 19				2001.6	Y				
Softmax	35.8	65.6	64.8	38.8	75.0	36.5	90.5	63.4	58.8	13.8	
Stick-breaking	37.7	67.6	65.4	36.6	76.0	37.4	91.9	63.1	59.5	13.4	
3B Parameter Models											
Softmax	42.2	73.1	73.2	40.8	78.8	37.4	93.5	67.6	63.3	11.3	
Stick-breaking	44.9	74.3	74.1	40.4	79.7	37.8	93.9	68.0	64.1	10.8	
Gemma2-2B	50.0	80.2	72.9	41.8	79.2	37.3	95.8	68.8	65.8	13.1	
Qwen1.5-4B	39.6	61.5	71.4	40.0	77.0	38.2	90.0	68.1	60.7	12.5	

1B and 3B model results

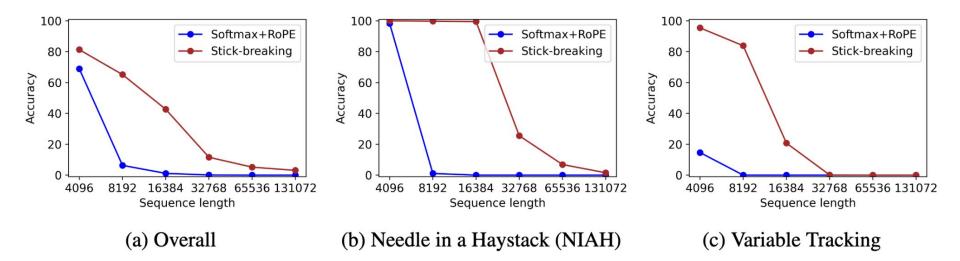
Table 3: MMLU few-shot results

	MMLU					
	0-shot	5-shot				
1B Parameter M	lodel					
Softmax	25.7	25.2				
Stick-breaking	28.4	29.3				
TinyLlama	25.3	26.0				
3B Parameter M	lodel					
Softmax	46.1	49.1				
Stick-breaking	50.8	52.9				
Gemma2-2B	49.3	53.1				
Qwen1.5-4B	54.2	55.2				

Table 4: 3B Model GSM8K Results

	GSM8K								
	5-shot	8-shot, CoT							
Softmax	44.1	44.2							
Stick-breaking	42.3	49.7							

RULER benchmarks

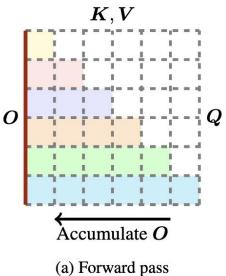


Forward Pass

Forward Computing Equation 1 directly will result in underflow issues, especially with lower precision training. We perform the operations in log-space, which results in a cumulative sum instead:

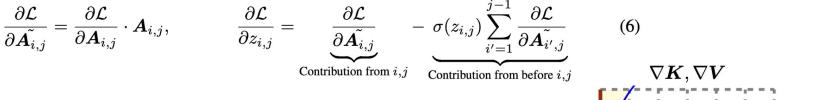
$$\mathbf{A}_{i,j} = \exp\left(\log\beta_{i,j} + \sum_{k=i+1}^{j-1}\log\left(1 - \beta_{k,j}\right)\right) = \exp\left(z_{i,j} - \sum_{k=i}^{j-1}\log\left(1 + \exp(z_{k,j})\right)\right) \quad (4)$$

- Compute in log-space (base 2, faster)
- Skips one extra softplus computation
- Accumulates from right to left (structure of stick-breaking)
- **Red** border on the left denotes cumulative softplus term

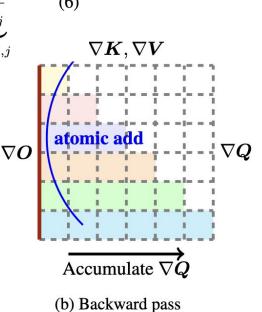


Backward Pass

Backward Let $\tilde{A}_{i,j} = \log A_{i,j}$, then:



- Left to right accumulation of logit gradients
- Unlike softmax, can't accumulate towards K and V
- Instead of 1 atomic add for Q gradients, it's 2 for K and V



Triton Implementation

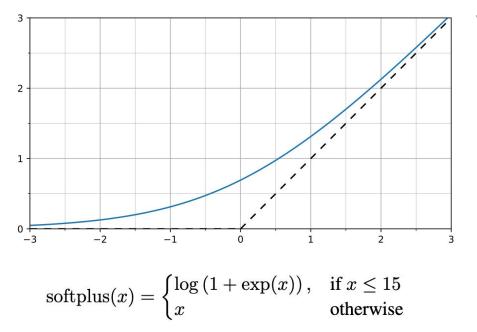
• Softplus acceleration

Naive triton implementation is too slow, used inline ASM for speedups

• Manual atomic_add

Naive atomic add implementation slow, implemented manual while-lock

Softplus



Triton:

```
tl.where(
    x < 15.0,
    tl.math.log2(1 + tl.math.exp2(x)),
    x
)</pre>
```

Equivalent PTX:

.reg .pred p;			
<pre>setp.gt.f32 p, \${in_r</pre>	eg}, 15.;		
<pre>@p mov.f32 \${out_reg</pre>	<pre>}, \${in_reg}</pre>	• 7	
<pre>@!p ex2.approx.ftz.f32</pre>	<pre>\${out_reg},</pre>	\${in_reg};	
@!p add.f32	<pre>\${out_reg},</pre>	<pre>\${out_reg},</pre>	1.0;
<pre>@!p lg2.approx.ftz.f32</pre>	<pre>\${out_reg},</pre>	<pre>\${out_reg};</pre>	- A-

While-lock for atomic add

- Use HBM variable as lock
- One-lock for entire block atomic add for both k and v blocks

```
while tl.atomic cas(Lock ptr, 0, 1) == 1:
     pass
count = tl.load(Count ptr)
if count == 0:
    tl.store(Count ptr, 1)
else:
     a += tl.load(A ptrs)
     b += tl.load(B ptrs)
tl.store(A ptrs, a)
tl.store(B_ptrs, b)
tl.atomic_xchg(Lock_ptr, 0)
```

Source:

https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html

Block Skipping during Decoding

- If sum of attention weights sum to 1, following time-steps can be skipped.
- Implementation caveats:
 - Block must all sum to 1 in order to do early exit
 - Have to wait for slowest head for improvements

Q

(c) Block skipping

Additional follow-up improvements

- Works better at larger head sizes: 128 dim
- Per-head normalisation
- Remainder bias

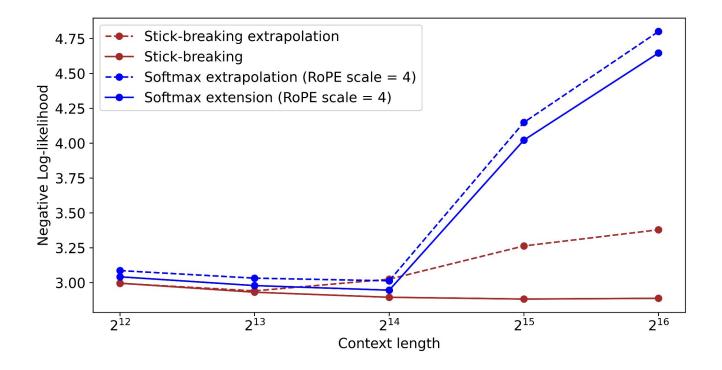
Remainder bias

• Sort of like an 'attention sink' – weighted with remaining mass of attention

 Maintains magnitude of output vector instead of giving almost 0 if attention weights are close to 0

$$oldsymbol{o}_j = \sum_{i=1}^{j-1} oldsymbol{A}_{i,j} \cdot oldsymbol{v}_i + \left(1 - \sum_{i=1}^{j-1} oldsymbol{A}_{i,j}
ight) \cdot oldsymbol{r}$$

Length extension



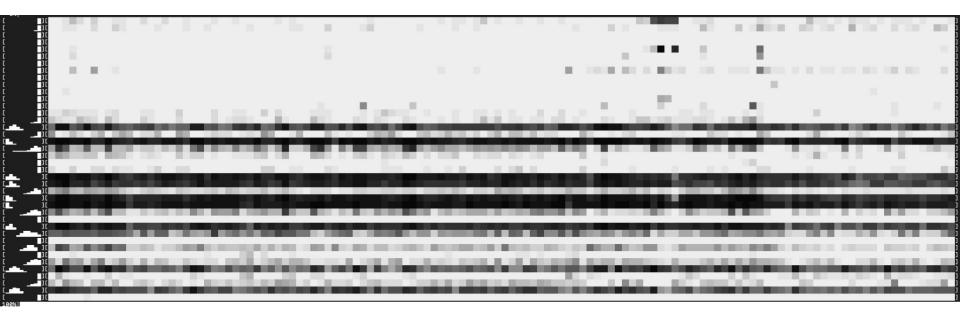
Forget Gate

- Modulate the betas in stick-breaking with a forget gate,
- Forget gate is computed only on the key-value side,
- Enables further sparsity
 -> more space in KV cache

 $\beta_{i,j} = f_i \cdot \hat{\beta_{i,j}}$

Forget Gate

First Layer



Last Layer

Forget Gate with auxiliary loss

First Layer

[
Г				# -																1
			 													-				
[İtitt				1: Î : :					İİste									i i i i
[_			_					j
		• • • • •		- !!									i		• •	1.1	:.:-!			
[_																			
Ĺ			 		· • _	-			•			-								j
[.]						!!			ii d	• • • • •	(a ¹ .a		·* ••		_	· .'				
[1 •	-		-	-	-		-						** !'	I - -			- •]
[_ _			 -		- × -			`_ i _			in n	· .!	- 1.	-			-	_	Ĩ	j
L =	· <u> </u>					· ·				1			-		_ 8 #		-			1
[<u> </u>			_			_						_	_]

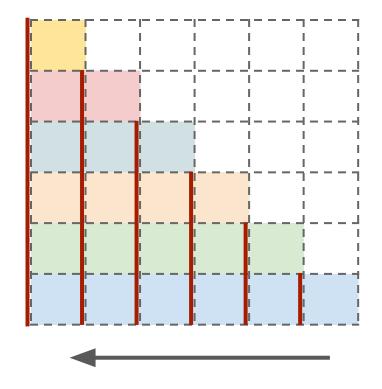
Last Layer

Recap

- Stick-breaking attention: swaps out softmax for stick-breaking process
- **Empirical results:** surprising length-generalisation properties, despite recency bias.
- Triton flash-attention-like implementation: slower, but allows scaling up

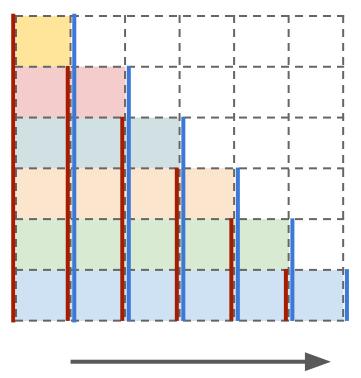
1. Forward pass

- Each (batch, head, horizontal block) assigned to different thread. (Colour on right represent separate threads)
- 2. Calculate stickbreaking output from right to left.
- 3. Save cumulative log-probabilities (Red borders)



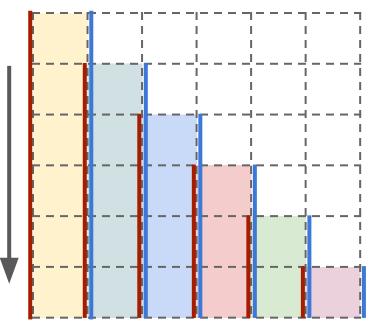
2. Backward pass (Step 1, dQ)

- Each (batch, head, horizontal block) assigned to different thread. (Colour on right represent separate threads)
- 2. Calculate from left to right
- 3. Recompute attention probabilities using memoized values (Red borders)
- 4. Calculate cumulative gradients forward (blue borders)



2. Backward pass (Step 1, dV & dK)

- Each (batch, head, vertical block) assigned to different thread. (Colour on right represent separate threads)
- 2. Calculate from top to bottom
- Recompute attention probabilities using memoized values (Red borders)
- 4. Recompute dV, dK gradients using memoized values (Blue borders)



Sparse computation

Computation can be skipped if blocks sum to 1.

