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Grammar Structures

https://physics.allen-zhu.com/part-1
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● Pros: 
○ No position embeddings needed
○ Good length extrapolation behaviour
○ Possible conditional computation tricks for speedups

● Cons:
○ Computation of log-sigmoids much much slower than exponents in softmax

Stick-breaking Attention



Experimental Results

● Small Synthetic Task (MQRAR)
● 350M models (Length Extrapolation)
● 1B & 3B models 

(general LLM evals, RULER)



Multi-Query Repeated Associative Recall

Zoology, https://arxiv.org/abs/2312.04927

● Setting where variable is repeatedly assigned 
instead of assigned once

● Task is to retrieve the last assignment



Multi-Query Repeated Associative Recall



Length Generalisation

● 350M models

● Trained on 2048 context length

● Evaluated on longer contexts 



1B and 3B model results



1B and 3B model results



RULER benchmarks



Forward Pass

● Compute in log-space (base 2, faster)

● Skips one extra softplus computation

● Accumulates from right to left (structure of stick-breaking)

● Red border on the left denotes cumulative softplus term



Backward Pass

● Left to right accumulation of logit gradients

● Unlike softmax, can’t accumulate towards K and V

● Instead of 1 atomic add for Q gradients, it’s 2 for K 
and V



Triton Implementation

● Softplus acceleration
Naive triton implementation is too slow, used inline ASM for speedups

● Manual atomic_add 
Naive atomic add implementation slow, implemented manual while-lock



Softplus

Equivalent PTX:

Triton:

tl.where(
 x < 15.0,
 tl.math.log2(1 + tl.math.exp2(x)),
 x
)



While-lock for atomic add

● Use HBM variable as lock

● One-lock for entire block atomic add for 
both k and v blocks

   while tl.atomic_cas(Lock_ptr, 0, 1) == 1:

        pass

    count = tl.load(Count_ptr)

    if count == 0:

        tl.store(Count_ptr, 1)

    else:

        a += tl.load(A_ptrs)

        b += tl.load(B_ptrs)

    tl.store(A_ptrs, a)

    tl.store(B_ptrs, b)

    tl.atomic_xchg(Lock_ptr, 0)

Source: 
https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html



Block Skipping during Decoding

● If sum of attention weights sum to 1, following time-steps 
can be skipped.

● Implementation caveats:
○ Block must all sum to 1 in order to do early exit
○ Have to wait for slowest head for improvements 



Additional follow-up improvements

● Works better at larger head sizes: 128 dim
● Per-head normalisation
● Remainder bias



Remainder bias

● Sort of like an ‘attention sink’ – weighted 
with remaining mass of attention

● Maintains magnitude of output vector 
instead of giving almost 0 if attention 
weights are close to 0



Length extension



Forget Gate

● Modulate the betas in stick-breaking with a 
forget gate,

● Forget gate is computed only on the 
key-value side,

● Enables further sparsity
-> more space in KV cache



Forget Gate
First Layer

Last Layer



Forget Gate with auxiliary loss
First Layer

Last Layer



Recap

● Stick-breaking attention: swaps out softmax for stick-breaking process

● Empirical results: surprising length-generalisation properties, despite recency bias.

● Triton flash-attention-like implementation: slower, but allows scaling up



1. Forward pass 

1. Each (batch, head, horizontal block) 
assigned to different thread.
(Colour on right represent separate 
threads)

2. Calculate stickbreaking output from right to 
left.

3. Save cumulative log-probabilities 
(Red borders)



2. Backward pass (Step 1, dQ)

1. Each (batch, head, horizontal block) 
assigned to different thread.
(Colour on right represent separate 
threads)

2. Calculate from left to right
3. Recompute attention probabilities using 

memoized values (Red borders) 
4. Calculate cumulative gradients forward 

(blue borders)



2. Backward pass (Step 1, dV & dK)

1. Each (batch, head, vertical block) 
assigned to different thread.
(Colour on right represent separate 
threads)

2. Calculate from top to bottom
3. Recompute attention probabilities using 

memoized values (Red borders) 
4. Recompute dV, dK gradients using 

memoized values (Blue borders)



Sparse computation

Computation can be skipped if blocks sum to 1. 


